Insomnia and menopause: a narrative review on mechanisms and treatments

To cite this article: P. Proserpio, S. Marra, C. Campana, E. C. Agostoni, L. Palagini, L. Nobili & R. E. Nappi (2020): Insomnia and menopause: a narrative review on mechanisms and treatments, Climacteric, DOI: 10.1080/13697137.2020.1799973

To link to this article: https://doi.org/10.1080/13697137.2020.1799973

Published online: 03 Sep 2020.
Insomnia and menopause: a narrative review on mechanisms and treatments

P. Proserpio, S. Marra, C. Campana, E. C. Agostoni, L. Palagin, L. Nobili, and R. E. Nappi

Center of Sleep Medicine, Department of Neuroscience, Niguarda Hospital, Milan, Italy; DINOGMI, University of Genoa, Genoa, Italy; Department of Clinical Experimental Medicine, Psychiatric Unit, School of Medicine, University of Pisa, Pisa, Italy; IRCCS G. Gaslini Institute, University of Genoa, Genoa, Italy; Research Center for Reproductive Medicine, Gynecological Endocrinology and Menopause, Obstetrics and Gynecology Unit, IRCCS S. Matteo Foundation, Department of Clinical, Surgical, Diagnostic and Paediatric Sciences, University of Pavia, Pavia, Italy

ABSTRACT

The menopausal transition is associated with an increased frequency of sleep disturbances. Insomnia represents one of the most reported symptoms by menopausal women. According to its pathogenetic model (3-P Model), different predisposing factors (i.e. a persistent condition of past insomnia and aging per se) increase the risk of insomnia during menopause. Moreover, multiple precipitating and perpetuating factors should favor its occurrence across menopause, including hormonal changes, menopausal transition stage symptoms (i.e. hot flashes, night sweats), mood disorders, poor health and pain, other sleep disorders and circadian modifications. Thus, insomnia management implies a careful evaluation of the psychological and somatic symptoms of the individual menopausal woman by a multidisciplinary team. Therapeutic strategies encompass different drugs but also behavioral interventions. Indeed, cognitive behavioral therapy represents the first-line treatment of insomnia in the general population, regardless of the presence of mood disorders and/or vasomotor symptoms (VMS). Different antidepressants seem to improve sleep disturbances. However, when VMS are present, menopausal hormone therapy should be considered in the treatment of related insomnia taking into account the risk–benefit profile. Finally, given its good tolerability, safety, and efficacy on multiple sleep and daytime parameters, prolonged-released melatonin should represent a first-line drug in women aged ≥ 55 years.

INTRODUCTION

Current evidence suggests that neurophysiological phenomena occurring during sleep fulfill different functions. Indeed, sleep is essential for multiple cerebral processes, such as learning and memory consolidation, but contributes also to metabolic and hormonal regulations. Sleep differs between men and women, probably related to gender differences in hormone secretion. Women report consistently worse sleep quality over the entire life span with some ‘vulnerable periods’ related to specific female conditions, such as menstrual cycle, pregnancy, and menopause.1,2

The aim of this narrative review is to summarize up-to-date theories regarding the pathogenic mechanisms of sleep difficulties during menopause. Indeed, an in-depth knowledge of those factors affecting sleep across the transition and beyond might be also essential to efficiently target sleep disorder management. Finally, in the last part we also review the main therapeutic options for insomnia during menopause, providing an algorithm to help the clinician selecting the more appropriate pharmacological or behavioral treatment strategy.

METHOD

A literature search for studies (January 1980–January 2020) focusing on sleep disturbances during menopause published in the National Library of Medicine (Medline Database, Google Scholar, and Scopus) was performed using the search terms ‘menopause’ and ‘sleep disturbances/disorders’ or ‘insomnia’. We considered studies investigating: the prevalence of sleep disorders in menopausal transition; the pathogenetic mechanisms at the basis of the association between menopause and insomnia; and the therapeutic options for insomnia during menopause. Exclusion criteria were: language other than English; unavailable full-length texts; dissertations; and correspondence. Two of us (C.C. and R.E.N.) extracted the data independently.

INSOMNIA: DEFINITION AND EPIDEMIOLOGY

Insomnia represents a persistent difficulty of falling asleep and maintaining sleep, which occurs even if every condition for a good sleep is settled, resulting in daytime impairment. Insomnia is considered ‘chronic’ when it occurs for at least three nights a week for three consecutive months.3 In its...
chronic form, insomnia causes clinically significant social, occupational, and behavioral distress. Daytime symptoms include fatigue, sleepiness, mood disturbances, alterations of memory functions and attention, and accidents. Recent evidence revealed an association of insomnia with cardiovascular diseases like hypertension, cardiovascular disease, diabetes, and increased risk of mortality.

Epidemiologically, insomnia is a very common health problem. Large cohorts from various countries reported a wide range of prevalence. Regional and cultural differences and heterogeneity of assessment tools contribute to the large prevalence variation. In 2006, a population-based study found that 6–33% were affected by insomnia.

Different studies suggest that women complain more frequently of insomnia than men do. Moreover, insomnia increases with age. Insomnia seems to be common for women across different stages of the reproductive lifespan and varies during the menstrual cycle, suggesting that fluctuations of sexual hormones play a crucial role in several sleep disorders.

Insomnia across the menopause

Sleep alterations represent a key symptom of menopause transition. Many biological and chronobiological factors, such as physiological alterations associated with aging, menopausal symptoms (e.g., vasomotor symptoms [VMS]), poor health perception, mood symptoms, and comorbid chronic health issues (low back pain, musculoskeletal disorders, and osteoarthritis), together with socioeconomic, psychosocial, and race/ethnic factors are involved. However, an independent correlation between menopausal stages and sleep disturbance, beyond the effects of aging and other confounders, is evident. Insomnia is the most frequent sleep disorder during menopause as compared with the prevalence of obstructive sleep apnea (16–20%) or restless leg syndrome (20–24%) (Table 1).

In a multiethnic survey (the Study of Women’s Health Across the Nation [SWAN]) following women for 10 years across the menopause, insomnia was present in 46–48% of menopausal women versus 38% of premenopausal women. Another large survey conducted in a Latin American population confirmed that the prevalence of insomnia increases with female age and menopausal stages.

The main predictive factor for insomnia during menopause is the premenopausal sleep condition: a persistent condition of past insomnia is strongly related to future sleep disturbances. Regarding insomnia subtypes, a disorder of sleep maintenance is the most frequently reported, with different awakenings and non-restorative sleep. As in the general population, insomnia at menopause is associated with multiple adverse effects such as poor health-related quality of life, decreased work productivity, and increased healthcare utilization but also with higher prevalence of anxiety, depression, and cardiovascular diseases.

Insomnia and menopause: pathophysiologic links

Mechanisms causing insomnia in menopausal women are multifactorial and involve hormonal changes, transition-stage symptoms (e.g., hot flashes [HFs], night sweats), and mood disorders as well as some factors coincident with midlife and being older, such as stress, obesity, poor health, and increased incidence of other sleep disorders.

Hormonal changes

Many studies reported an effect of sexual hormones on sleep. Progesterone exerts anxiolytic and sedative properties, stimulating benzodiazepine receptors favoring non-rapid eye movement sleep. Estrogens seem to decrease sleep latency and the number of awakenings. Indeed, low estrogen levels have been found to be associated with a greater severity of awakenings. Moreover, they regulate the time of lowest body temperature during the night, as demonstrated by the evidence that stopping estrogen therapy leads to a shift forward of the aforementioned time and changes the depth of the temperature drop. Finally, little is known about the effect of androgens on sleep. A cross-sectional observational study showed a positive association of dehydroepiandrosterone sulfate with wake after sleep onset in a general population of women. Other findings on the relationship between steroid hormone levels and sleep difficulties in menopause showed an association between follicle stimulating hormone, estradiol changes, and estradiol to total testosterone ratio and poor sleep quality across the transition and in the late reproductive stage.

Despite intensive research, a correlation between polysomnographic features, menopausal stages, and hormonal levels is not clearly demonstrated. This may be due to the presence of multiple influencing factors, including a high variability of their measurements across the menopausal phases. This makes the isolation of hormone influence challenging. For instance, in women with insomnia during menopause, no relationship between follicle stimulating hormone and wake after sleep onset (a common sleep alteration in this population) has been shown.

Hot flashes

HFs are common symptoms of impending menopause (reported by up to 80% of women) and are considered an important source of sleep disturbance. The presence of HFs has been consistently associated with poorer self-reported sleep quality, suggesting a possible link between HFs and nocturnal awakenings. Data regarding the grade of interference between VMS and sleep in menopausal women are discordant; differences might be related to how HFs were classified in term of intensity and interference with sleep continuity. Campbell and Murphy reported symptoms of insomnia in 29% of menopausal women with HFs. They found that high body core temperature prior to and during sleep was significantly correlated with poorer sleep efficiency and higher luteinizing hormone levels even in women.
without VMS. More recently, it has been found that almost 80% of HFs interfered with sleep. Longitudinal data have shown that women with moderate-to-severe HFs present a higher risk of frequent nocturnal awakenings in comparison to women without HFs. Bothersome HFs, but not HFs alone, seem to be associated with sleep difficulties. A recent protocol demonstrated that an objective increase of HFs is most common during early sleep and wake, typically preceding or occurring simultaneously with wake episodes, and that the number of HFs reported at night correlates with worsening of sleep disturbance indices. Finally, treatment of HFs using menopausal hormone therapy (MHT) seems to improve sleep quality.

Mood disorders
The association between menopause, mood disorders, and insomnia is widely reported. Depression represents a risk factor for poor sleep and menopausal women are at increased risk of developing a major depressive episode, especially when HFs are present. In accordance with the ‘domino effect theory’, sleep is disturbed by HFs or other menopause-related factors, and multiple arousals permit the development of intrusive anxious thoughts several times during the night (also exacerbated by pre-existing anxiety or depression). In turn, waking up repeatedly offers plenty of opportunities for presenting anxiety throughout the night. Finally, sleep fragmentation may contribute to daytime mood symptoms. In this context, insomnia follows sleep disruption and depression follows insomnia within a vicious circle (Figure 1).

Circadian modifications
The sleep/wake alternation is regulated by two biological mechanisms, the circadian and the homeostatic processes. While the homeostatic system regulates sleep intensity, the circadian clock controls sleep timing. This latter process is

Table 1. Prevalence, physiopathology, symptoms, and treatments of other sleep disorders in menopause.

<table>
<thead>
<tr>
<th>Sleep disorder</th>
<th>Prevalence (%)</th>
<th>Physiopathology</th>
<th>Signs/symptoms</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obstructive sleep apnea</td>
<td>16–20</td>
<td>Loss of protective effects of female hormones (progesterone)</td>
<td>Obesity Snoring and witness apneas Dry mouth Choking Nocturia Nocturnal sweating Daytime sleepiness Morning or nocturnal headache</td>
<td>Weight loss CPAP</td>
</tr>
<tr>
<td>RLS/PLM</td>
<td>20–24</td>
<td>Aging Unknown role of female hormones (usually, high estrogen levels increase the risk of RLS)</td>
<td>An urge to move the legs, usually accompanied by unpleasant sensations in the legs. These symptoms must: Be partially or totally relieved by movement Occur exclusively or predominantly in the evening or night</td>
<td>Dopamine agonists Gabapentin, pregabalin</td>
</tr>
</tbody>
</table>

CPAP, continuous positive air pressure; PLM, periodic leg movements; RLS, restless leg syndrome.
driven by an endogenous pacemaker located in the hypothalamic suprachiasmatic nuclei. The suprachiasmatic nuclei is normally entrained by different stimuli that signal the time of day; light is the most important stimulus in mammals. The pineal gland is the nucleus where melatonin is synthesized, according to the light level; thus, the absence of light represents the principal stimulus for melatonin secretion. Melatonin exerts beneficial effects on sleep through its soporific and synchronizing effects on circadian rhythms. Recent findings demonstrated that this hormone plays an important role also in the modulation of mood, immune functions, carcinogenesis, and reproduction.

Aging is typically associated with both alteration of the circadian system and a decrease in melatonin secretion, which are two strongly connected conditions. Limited data suggest that differences in circadian regulation (advanced circadian phase) in postmenopausal women could contribute to sleep difficulties, particularly a more fragmented sleep or early morning awakening. Animal models also suggest that alterations of reproductive hormone secretion may alter circadian rhythmicity, although many knowledge gaps remain. Circadian processes are critical to both sleep/wake and mood regulation. Consistent with findings in general populations, sleep/wake rhythms alterations are correlated with both higher anxiety and the presence of depression in menopausal women.

Together with the sharp decrease of estrogen levels during menopause, even the gradual reduction of melatonin levels seems to play a role in developing insomnia. Indeed, these hormonal changes can eventually bring sleep disturbances and decreased quality of life in menopausal women. Toffol et al. demonstrated that postmenopausal women had lower night-time serum melatonin concentrations than perimenopausal women. Interestingly, a transient peak was observed at the time of full-blown menopause, where women can feel a transient improvement in sleep quality in spite of low estrogen levels. Following this time period, melatonin secretion continues to decrease, sometimes to the extent that the woman experiences an advanced sleep phase syndrome.

Some authors proposed that the complex interaction between melatonin and gonadal hormonal milieu relies on the influence of sex steroids on the effects of melatonin rather than on its own levels. Acute melatonin administration reduces body temperature, glucose tolerance, and insulin sensitivity, increases thyroid stimulating hormone, and stimulates luteinizing hormone. Sex steroid changes related to the menstrual cycle modulate most of these effects, but at menopause they are less active. Melatonin may favor sleep by peripheral vasodilating and thermoregulatory actions. These effects are modulated by sex steroids and are probably reduced in postmenopausal women, facilitating the development of insomnia. Moreover, the change in melatonin level induces important alterations in the biological function of almost every organ with potential implications in sleep quality.

Finally, numerous recent studies recognize sleep disorders and sleep/wake rhythm disturbances as risk factors for dementia development, through different mechanisms. Indeed, the circadian system seems to play a role for the clearance of several proteins also involved in the pathogenesis of several forms of dementia. Epidemiological studies revealed that the risk of dementia is higher in women, given the modulatory role of sex steroids on cognition. Therefore, the loss of ovarian hormones during menopause could act on cognitive reserve both directly and indirectly through an increase of sleep disorders, accelerating cognitive decline.

Management of insomnia during menopause

In menopausal women, insomnia should be a primary disorder or can occur as a secondary condition underlying other sleep disorders. It is therefore mandatory to first exclude or treat these disorders before starting a specific treatment. Recently, a position statement by the Italian Association of Sleep Medicine was published to provide evidence-based advice on the management of postmenopausal sleep disorders. Indeed, during evaluation of sleep problems, clinicians – using sleep history assessment or specific questionnaires – should investigate the timing of sleep difficulties in relation to menopausal symptoms, changes in bleeding patterns, and the presence of menopausal disturbances, but also the occurrence of symptoms suggestive for obstructive sleep apnea or movement disorders (Table 1).

Insomnia is usually diagnosed through clinical evaluation and a polysomnographic study is generally not recommended. However, in the non-responder insomniac patient, or if other sleep disorders are supposed, polysomnography is suggested.

In general, the identification of patients with higher risk of insomnia is important in order to provide primary (i.e. education on stress management) and secondary (i.e. modify sleep-related behaviors) prevention countermeasures. Similarly, in menopausal transition, women at risk of developing insomnia (i.e. history of severe premenstrual syndrome and neurotic personality style) might benefit from the same preventative interventions.

According to the European guideline for the diagnosis and treatment of insomnia, the first-line treatment for chronic insomnia in adults of any age in the general population is represented by cognitive behavioral therapy for insomnia (CBT-I). A pharmacological intervention can be proposed when CBT-I is not effective or unavailable.

Table 2 summarizes the most relevant RCT studies focused on management of insomnia during menopause.

Cognitive behavioral treatment

CBT-I represents a multicomponent treatment targeting cognitive and behavioral factors contributing to insomnia. Its efficacy in the general population is well known from multiple controlled trials.

Two studies belong to the Menopause Strategies Finding Lasting Answers for Symptoms and Health research network (MsFLASH). The first trial was a randomized controlled trial...
<table>
<thead>
<tr>
<th>Insomnia treatment</th>
<th>Study</th>
<th>Population</th>
<th>Interventions</th>
<th>Sleep outcomes</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBT-I</td>
<td>McCurry et al.</td>
<td>106 perimenopausal or postmenopausal women</td>
<td>CBT-I, telephone-delivered menopause education</td>
<td>ISI, PSQI</td>
<td>CBT-I improves self-reported insomnia symptoms and VMS. CBT-I produced the greatest reduction in ISI. Effects on ISI were similar for exercise and venlafaxine; small decreases in ISI were observed with escitalopram, yoga, and E2. The largest reduction in PSQI was with CBT-I. PSQI decreases were significantly better than control with escitalopram, exercise, yoga, estradiol, and venlafaxine. Omega-3 supplements did not improve insomnia symptoms.</td>
</tr>
<tr>
<td>Guthrie et al.</td>
<td>546 perimenopausal and postmenopausal women</td>
<td>CBT-I, escitalopram, yoga, aerobic exercise, omega-3 fatty acids, oral E2, venlafaxine</td>
<td>ISI, PSQI</td>
<td>CBT-I produced the greatest reduction in ISI. Effects on ISI were similar for exercise and venlafaxine; small decreases in ISI were observed with escitalopram, yoga, and E2. The largest reduction in PSQI was with CBT-I. PSQI decreases were significantly better than control with escitalopram, exercise, yoga, estradiol, and venlafaxine. Omega-3 supplements did not improve insomnia symptoms.</td>
<td></td>
</tr>
<tr>
<td>Guthrie et al.</td>
<td>65 546 perimenopausal and postmenopausal women</td>
<td>CBT-I, escitalopram, yoga, aerobic exercise, omega-3 fatty acids, oral E2, venlafaxine</td>
<td>ISI, PSQI</td>
<td>CBT-I produced the greatest reduction in ISI. Effects on ISI were similar for exercise and venlafaxine; small decreases in ISI were observed with escitalopram, yoga, and E2. The largest reduction in PSQI was with CBT-I. PSQI decreases were significantly better than control with escitalopram, exercise, yoga, estradiol, and venlafaxine. Omega-3 supplements did not improve insomnia symptoms.</td>
<td></td>
</tr>
<tr>
<td>Guthrie et al.</td>
<td>16,608 postmenopausal women</td>
<td>CBT-I, escitalopram, yoga, aerobic exercise, omega-3 fatty acids, oral E2, venlafaxine</td>
<td>ISI, PSQI</td>
<td>CBT-I produced the greatest reduction in ISI. Effects on ISI were similar for exercise and venlafaxine; small decreases in ISI were observed with escitalopram, yoga, and E2. The largest reduction in PSQI was with CBT-I. PSQI decreases were significantly better than control with escitalopram, exercise, yoga, estradiol, and venlafaxine. Omega-3 supplements did not improve insomnia symptoms.</td>
<td></td>
</tr>
<tr>
<td>Drake et al.</td>
<td>150 postmenopausal women</td>
<td>CBT-I, sleep hygiene education, sleep restriction therapy</td>
<td>ISI, sleep diaries</td>
<td>CBT-I and sleep restriction resulted in more effective insomnia treatment. CBT-I was superior to sleep restriction in improving sleep maintenance.</td>
<td></td>
</tr>
<tr>
<td>Hays et al.</td>
<td>16,608 postmenopausal women</td>
<td>0.625 mg CEE + 2.5 mg MPA versus placebo</td>
<td>WHIIRS</td>
<td>CEE + MPA was associated with a statistically significant but small and not clinically meaningful benefit in terms of sleep disturbance. Among women aged 50–54 years with VMS, CEE + MPA improved VMS and resulted in a small benefit in terms of sleep disturbance.</td>
<td></td>
</tr>
<tr>
<td>Saletu-Zyhlarz et al.</td>
<td>51 postmenopausal women</td>
<td>2 mg EV + 3 mg DNG versus 2 mg EV versus placebo</td>
<td>PSG parameters and PSQI</td>
<td>EV + DNG significantly improved subjective sleep quality and marginally improved variables concerning objective sleep and awakening quality.</td>
<td></td>
</tr>
<tr>
<td>Sherman et al.</td>
<td>246 postmenopausal women with heart disease</td>
<td>0.625 mg CEE versus CEE + 2.5 mg/day MPA versus placebo</td>
<td>WHIIRS</td>
<td>MHT was not significantly associated with more favorable outcomes for any health-related quality of life.</td>
<td></td>
</tr>
<tr>
<td>Heinrich and Wolf</td>
<td>51 hysterectomized women</td>
<td>2 mg EV versus EV + 100 mg MP versus placebo</td>
<td>ADSK Sleep item + Sleep item from Menopausal Index (combined)</td>
<td>CEE + MPA treatment had no effect on mood, well-being, menopausal symptoms, sleep quality, and depressive symptoms.</td>
<td></td>
</tr>
<tr>
<td>Savolainen-Peltonen et al.</td>
<td>150 postmenopausal women (half of women with severe VMS, half of symptom free)</td>
<td>Transdermal 1 mg E2 versus oral E2 2 mg with or without 5 mg MPA versus placebo</td>
<td>WHQ sleep item</td>
<td>In women with baseline VMS, MHT significantly improved the scores for sleep.</td>
<td></td>
</tr>
<tr>
<td>Cintron et al.</td>
<td>727 perimenopausal or postmenopausal women</td>
<td>Oral CEE versus transdermal E2 plus MP (200 mg) versus placebo</td>
<td>PSQI</td>
<td>Sleep quality improved with both MHT formulations.</td>
<td></td>
</tr>
<tr>
<td>LeBlanc et al.</td>
<td>37 postmenopausal women</td>
<td>2 mg E2</td>
<td>OHSU SL sleep diary</td>
<td>Women receiving E2 had greater improvements in menopausal symptoms and sleep.</td>
<td></td>
</tr>
<tr>
<td>Antidepressants</td>
<td>Ensrud et al.</td>
<td>205 perimenopausal and postmenopausal women with VMS</td>
<td>Escitalopram (10–20 mg/day) versus placebo</td>
<td>ISI, PSQI</td>
<td>Escitalopram at 10–20 mg/day reduced insomnia symptoms and improved subjective sleep quality at 8 weeks of follow-up.</td>
</tr>
<tr>
<td>DeFronzo et al.</td>
<td>25 menopausal women</td>
<td>Escitalopram (10–20 mg flexibly dosed) versus placebo</td>
<td>PSQI</td>
<td>Escitalopram induced a decrease in both VMS frequency and severity and an improvement in dysphoria, anxiety, quality of life, and sleep.</td>
<td></td>
</tr>
</tbody>
</table>
| Davari-Tanha et al. | 20 postmenopausal women | Venlafaxine (75 mg/day) versus citalopram (20 mg/day) versus placebo | PSQI | Citalopram and venlafaxine are equally more effective than placebo in reducing sleep disturbance and severity of VMS. Citalopram is more effective in reducing frequency of VMS than venlafaxine. Venlafaxine is more effective than citalopram in treatment of depression (continued)
(RCT) of a telephone CBT-I intervention versus telephone-delivered menopause education. In this study, CBT-I resulted in significant improvements in self-reported insomnia symptoms, sleep quality, sleep latency, wake time after sleep onset, and sleep efficiency compared to the educational protocol. Moreover, CBT-I reduced self-reported HFs interference more than the educational protocol. A second research trial\(^6\) compared the results of several RCTs on the effects of different interventions on insomnia and VMS in women with a comparably severity of both insomnia and VMS. They analyzed 546 perimenopausal women included in different trials and found that telephone-delivered CBT-I was more effective for reducing moderate-to-severe insomnia symptoms in women with HFs than other commonly used pharmacologic or lifestyle modification options. If CBT-I is unavailable, exercise and the antidepressant venlafaxine may produce moderate improvements in sleep quality\(^6\).

A recent controlled trial\(^6\) evaluated 150 postmenopausal insomniac women treated with sleep hygiene education versus sleep restriction therapy (SRT) versus CBT-I. SRT requires patients to limit the amount of time they spend in bed to an amount equal to their average total sleep time. This intentional limitation of the time in bed produces a mild sleep deprivation which leads to faster sleep onset and a deeper sleep. A final result of SRT is also a reduction in the negative beliefs and attitudes associated with sleep. CBT-I and SRT were more effective in insomnia treatment compared to sleep hygiene education. Although the response to CBT-I and SRT were similar overall, CBT-I was superior to SRT in improving sleep maintenance, a common perimenopausal problem.

Menopausal hormone therapy

MHT has long been considered an effective treatment for sleep disturbances in menopausal women\(^7\)–\(^12\). However, a recent meta-analysis reported an improvement in quality of life with MHT only in patients with VMS\(^12\). Indeed, MHT may act by improving other symptoms disturbing sleep across menopause. Estrogens may have an antidepressant effect, by the norepinephrine and histamine pathways, and a direct action on sleep and body thermoregulation\(^3\)\(^,\)\(^3\)\(^,\)\(^5\)\(^,\)\(^7\)\(^,\)\(^8\). Progesterone has a direct sedative function, stimulating the benzodiazepine receptors, with a consequent increase in the production of the \(\gamma\)-aminobutyric acid receptors during non-rapid eye movement sleep. Moreover, it may have an anxiolytic effect as a \(\gamma\)-aminobutyric acid agonist, even though the exact mechanism is unclear\(^3\)\(^,\)\(^7\). It is likely that different progestogens, depending on their metabolites, may exert specific effects on sleep. Indeed, a recent review showed that oral micronized progesterone is particularly effective for both treating VMS and improving sleep, highlighting its safety in menopausal women\(^7\). When prescribing MHT with the aim of relieving insomnia, it should be evaluated how much the benefits outweigh the risks of MHT exposure\(^6\)\(^,\)\(^8\)–\(^3\). Recent data showed that transdermal estradiol associated with micronized progesterone did not increase the risk for stroke or other thromboembolic events. Thus, transdermal

Table 2. Continued.

<table>
<thead>
<tr>
<th>Insomnia treatment</th>
<th>Study</th>
<th>Population</th>
<th>Interventions</th>
<th>Sleep outcomes</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suvanto-Luukkonen et al.(^6)</td>
<td>150 postmenopausal women</td>
<td>Fluoxetine (10–30 mg/day) versus citalopram (10–30 mg/day) versus placebo</td>
<td>Patient reports</td>
<td>Insomnia improved significantly only in the citalopram group; VMS did not improve in any of the three groups</td>
<td></td>
</tr>
<tr>
<td>BDZ and Z-drugs</td>
<td>Dorsey et al.(^10)</td>
<td>141 perimenopausal or postmenopausal women</td>
<td>Zolpidem (10 mg/day) versus placebo</td>
<td>Diary-based sleep parameters and GSDS</td>
<td>Zolpidem induced an increase in TST, a decrease in WASO and number of awakenings, and an improvement in sleep-related difficulty with daytime functioning</td>
</tr>
<tr>
<td>Soares et al.(^11)</td>
<td>410 perimenopausal or early postmenopausal women</td>
<td>Eszopiclone (3 mg/day) versus placebo</td>
<td>Physician global assessments of menopause, GCS, MADRS, and SDS</td>
<td>Eszopiclone provided significant improvements in sleep and positively impacted mood, quality of life, and menopause-related symptoms</td>
<td></td>
</tr>
<tr>
<td>Joffe et al.(^12)</td>
<td>46 perimenopausal and postmenopausal women</td>
<td>Eszopiclone (3 mg/day) versus placebo</td>
<td>ISI and diary-based sleep parameters</td>
<td>Eszopiclone reduced ISI scores and improved all sleep parameters, depressive symptoms, anxiety symptoms, quality of life, and nighttime but not daytime VMS</td>
<td></td>
</tr>
<tr>
<td>Gabapentin</td>
<td>Yurcheshen et al.(^19)</td>
<td>59 perimenopausal women with VMS</td>
<td>Gabapentin (300 mg three times daily) versus placebo</td>
<td>PSQI</td>
<td>Gabapentin induced an improvement in the sleep quality factor score, in the sleep efficiency factor score, and in the global PSQI score</td>
</tr>
</tbody>
</table>

ADSK, German version of Center for Epidemiological Studies Depression Scale; BDZ, benzodiazepine; CBT-I, cognitive behavior treatment for insomnia; CEE, conjugated equine estrogen; DNG, dienogest; E2, estradiol; EV, estradiol valerate; GCS, Greene Climacteric Scale; GSDS, General Sleep Disturbance Scale; ISI, Insomnia Severity Index; MADRS, Montgomery Asberg Depression Rating Scale; MHT, menopausal hormone therapy; MP, micronized progesterone; MPA, medroxyprogesterone acetate; OHSU SL, Oregon Health and Science University Sleep Laboratory; PSG, polysomnography; PSQI, Pittsburgh Sleep Quality Index; SDS, Sheehan Disability Scale; TST, total sleep time; VMS, vasomotor symptoms; WASO, wake time after sleep onset; WHIIRS, Women’s Health Initiative Insomnia Rating Scale; WHQ, Women’s Health Questionnaire.
treatment seems to be the safest type of MHT when risk of venous thromboembolism is considered. The only increased risk of MHT in postmenopausal women with increasing duration is breast cancer. In 2014, a meta-analysis reviewed studies analyzing isoflavone properties on HFs and other menopausal-related symptoms, showing that these alternative therapies are not effective on HFs but exert some beneficial effects on sleep disturbances.

Antidepressants

The most popular prescriptive treatments for VMS other than MHT in menopausal women affected by insomnia are antidepressants, especially in women with contraindications to hormonal treatments. Escitalopram is effective, especially in the case of comorbid depression. In particular, a large RCT showed that escitalopram at 10–20 mg/day compared with placebo reduced insomnia symptoms and improved subjective sleep quality in 205 perimenopausal and postmenopausal women with HFs. Another RCT compared the efficacy of fluoxetine and citalopram versus placebo. Sleep outcomes were assessed only by patient reports. Insomnia improved significantly only in the citalopram group, whereas VMS did not improve in any of the three groups. A small case series of 11 menopausal women with insomnia showed that treatment with mirtazapine alone or associated with prolonged-release melatonin (PRM) significantly improved the subjective quality of sleep. The majority of women reported weight gain following mirtazapine intake; interestingly, weight decreased following mirtazapine withdrawal and PRM intake. Further studies are needed to evaluate the efficacy of other new antidepressants with potential efficacy on both VMS and insomnia. For instance, two RCTs on esmirtazapine, the (S)-(+)-enantiomer of mirtazapine, found that this drug reduced the frequency and severity of moderate-to-severe VMS associated with menopause and was generally well tolerated. However, since these studies were conducted, the company discontinued further development of esmirtazapine.

Melatonin

Previous studies have shown that melatonin treatment may improve both subjective sleep problems and mood.
disturbances in postmenopausal women with insomnia. Treatment with melatonin had a mild hypnotic effect and did not provoke hangover symptoms in the morning.\(^94\text{-}96\)

In the last years, a PRM formulation (2 mg) has been approved for primary insomnia characterized by poor quality of sleep in people aged \(\geq 55\) years.\(^97\)\(^,\)\(^98\) It represents the only licensed medication containing melatonin and its prolonged release formulation mimics the internal melatonin secretion profile by releasing melatonin gradually. Such a formulation has been shown to preserve sleep structure\(^99\) without withdrawal effects\(^100\), in the absence of negative impacts on psychomotor functions, memory recall, and postural stability in older adults.\(^101\),\(^102\)

PRM (2 mg) has shown efficacy in multiple sleep and daytime parameters in patients aged 55–80 years, including improvements in sleep quality, morning alertness, and quality of life, as well as sleep latency; these improvements were maintained or enhanced over the 6-month period.\(^97\) Most safety concerns with use of hypnotics do not occur with PRM (2 mg). Thus, also in accordance with the updated ‘British Association for Psychopharmacology consensus statement on evidence-based treatment of insomnia, parasomnias and circadian rhythm disorders’\(^103\), the recent Italian consensus recommendations for the evaluation and management of insomnia in clinical practice suggested that PRM 2 mg should be the preferred choice in subjects aged > 55 years in light of its efficacy and limited side effects.\(^104\) Given as a first-line prescription daily for 13 weeks, PRM (2 mg) has the potential to avoid long-term, hazardous use of hypnotics, without causing rebound effects. Moreover, as discussed above, during menopausal transition, decreased melatonin secretion and alteration of the circadian oscillator system play a pivotal role in inducing sleep-disturbing symptoms and impairing sleep regulation.\(^105\)

Therefore, in spite of the lack of RCT available in menopause, PRM (2 mg) seems to be a valuable treatment option for menopausal women and represents a safe alternative to benzodiazepine or Z-drugs\(^106\), given its good tolerability and no safety concerns on concomitant therapy with antihypertensive, antidiabetic, lipid-lowering, or anti-inflammatory drugs.\(^100\)

Another melatonin drug agonist, the MT1 and MT2 melatonergic receptor agonist ramelteon, has been shown to be effective in improving objective sleep alterations in insomnia patients.\(^107\) Its safety has been demonstrated in long-term studies.\(^108\),\(^109\)

Benzodiazepine and Z-drugs

A short-term treatment (2–4 weeks) with short-acting benzodiazepines (triazolam, brotizolam) or Z-drugs (zolpidem, zopiclone, zaleplon) may be an efficacious approach.\(^110\),\(^111\) In the general population, a buffered zolpidem sublingual formulation is approved to be taken in the middle of the night by patients with early awakening insomnia and at least 4 h of bedtime remaining. RCTs in menopause women are only available for Z-drugs. Zolpidem has been shown to increase reported total sleep time and decrease the wake time after sleep onset and number of awakenings in perimenopausal or postmenopausal women, without causing tolerance.\(^110\) Similarly, eszopiclone resulted effective in the treatment of both insomnia and VMS in two RCTs\(^111\),\(^112\).

Both benzodiazepines and Z-drugs are effective in facilitating sleep onset but should be used with caution considering adverse health associations in long-term users. Their side effects include postural instability and falls during nocturnal awakenings, cognitive impairment, tolerance, rebound insomnia upon discontinuation, car accidents, and abuse.\(^113\) However, it is unclear how much of the impact of sedative hypnotics is specific for menopausal insomnia.\(^113\) The health outcome of the increased risk of falls may be more serious at advanced age because older women display a greater vulnerability to fracture.\(^102\) Indeed, different meta-analyses showed that the use of benzodiazepines\(^114\) or Z-drugs\(^115\) is associated with a significant increase in fracture risk. Moreover, benzodiazepine use is a major osteoporosis risk factor in women 50–65 years of age, second only to low calcium intake.\(^116\) On the other hand, progesterone may potentiate the behavioral effects of benzodiazepines and may contribute to benzodiazepine use and abuse among women.\(^117\)

Gabapentin

Gabapentin has been proposed as an alternative or associate treatment in menopausal insomnia. In doses of 300–900 mg, gabapentin seems to reduce symptoms of HFs by 66\%.\(^118\) In particular, a RCT showed a significant improvement of sleep quality in patients treated with gabapentin 300 mg three times daily in a cohort of perimenopausal women with HFs and chronic insomnia.\(^19\) Recently, a positive effect of this drug was demonstrated on ‘LUNA’, a syndrome associating low estradiol levels and night-time awakening, with or without HFs. In this case series, gabapentin induced a reduction in sleep latency, an increase of slow wave sleep and rapid eye movement sleep, and a longer sleep time.\(^20\) Gabapentin may induce side effects such as motor incoordination, drowsiness, and fluid retention.

Conclusion

Insomnia represents one of the most frequent symptoms of menopause. Hormonal changes can be responsible for insomnia across menopause transition and beyond, but the high prevalence of this sleep disorder is likely to be influenced by psychological changes or by alterations in other regulatory systems (i.e., circadian rhythm) often co-occurring in relation to the aging process. To date, there are no universal guidelines for insomnia treatment during menopause but when a hypnotic is indicated, PRM (2 mg) should be tried first, considering its good tolerability, safety, and efficacy on multiple sleep and daytime parameters. However, we believe that a careful evaluation of the psychological and somatic symptoms of the patient by a multidisciplinary team is essential to drive a more adequate therapeutic approach, taking...
into account the domino effect of menopausal syndrome (Figure 2).

Potential conflict of interest The authors declare no conflict of interest concerning the manuscript contents. Dr Nobili reports personal fees from Eisai, others from Fidia Pharma, outside the submitted work.

Source of funding Nil.

ORCID
L. Palagini http://orcid.org/0000-0003-1676-629X

References
1. Lee KA, Baker FC. Sleep and women’s health across the lifespan. Sleep Med Clin 2018;13:xi–xvi
23. Woods NF, Mitchell ES. Sleep symptoms during the menopausal transition and early postmenopause: observations from the Seattle Midlife Women’s Health Study. Sleep 2010;33:539–49
32. de Zambotti M, Colrain IM, Baker FC. Interaction between reproductive hormones and physiological sleep in women. J Clin Endocrinol Metab 2015;100:1426–33
41. Ohayon MM. Severe hot flashes are associated with chronic insomnia. Arch Intern Med 2006;166:1262–8
43. de Zambotti M, Colrain IM, Javitz HS, et al. Magnitude of the impact of hot flashes on sleep in perimenopausal women.
 Fertil Steril 2014;102:1708–15.e1

45. Polo-Kantola P. Sleep problems in midlife and beyond.
 Maturitas 2011;68:224–32

46. Thurston RC, Bromberger JT, Joffe H, et al. Beyond frequency: who is most bothered by vasomotor symptoms?

47. Achemann P. The two-process model of sleep regulation revisited.
 Aviat Space Environ Med 2004;75:A37–43

 Curr Neuropharmacol 2017;15:434–43

49. Walters JF, Hampton SM, Ferns G, Skene DJ. Effect of menopause on melatonin and alertness rhythms investigated in constant routine conditions.
 Chronobiol Int 2005;22:859–72

50. Mong JA, Cusmano DM. Sex differences in sleep: impact of biological sex and sex steroids.

 Menopause 2014;21:493–500

52. Parry BL, Meliska CJ, Martinez LF, et al. Late, but not early, wake therapy reduces morning plasma melatonin: relationship to mood in Premenstrual Dysphoric Disorder.
 Psychiatry Res 2008;161:76–86

54. Cagnacci A. Role of melatonin in circadian rhythm at menopause.
 Climacteric 2017;20:183

 Prog Neurobiol 2011;93:350–84

 Prog Neurobiol 2011;93:350–84

57. Guarneri B. Sleep disorders and cognitive alterations in women.
 Maturitas 2019;126:25–7

 Maturitas 2019;129:30–9

 Maturitas 2019;128:1–3

60. Jarrin DC, Chen IY, Ivers H, et al. The role of vulnerability in stress-related insomnia, social support and coping styles on incidence and persistence of insomnia.
 J Sleep Res 2014;23:681–8

 *Sleep 2013; 36:1279–88

 J Sleep Res 2017;26:675–700

 JAMA 2009;301:2005–15

64. McCurry SM, Guthrie KA, Morin CM, et al. Telephone-based cognitive behavioral therapy for insomnia in perimenopausal and postmenopausal women with vasomotor symptoms: a MsFLASH randomized clinical trial.

 Sleep 2018; 41:41

 *Sleep 2019;42:42

67. Baber RJ, Panay N, Fenton A, 2016 IMS Recommendations on women’s midlife health and menopause hormone therapy.
 Climacteric 2016;19:109–50

71. Heinrich AB, Wolf OT. Investigating the effects of estradiol or estradiol/progestrone treatment on mood, depressive symptoms, menopausal symptoms and subjective sleep quality in older healthy hysterectomized women: a questionnaire study.
 Neuropsychobiology 2005;52:17–23

 Sleep Med 2006;7:436–47

 Endocrine 2017;55:702–11

 Menopause 2014;21:732–9

 Menopause 2018;25:145–53

77. Empson JA, Purdie DW. Effects of sex steroids on sleep.

78. Antonijevic IA, Stalla GK, Steiger A. Modulation of the sleep electroencephalogram by estrogen replacement in postmenopausal women.

 Climacteric 2018;21:358–65

 BMJ 2019;364:k4810
104. Palagini L. Expert opinions and consensus recommendations for the evaluation and management of insomnia in clinical practice: joint statements of Five Italian scientific societies. *Front Psychiatry* 2020;11